Evidence of Formation of Superdense Nonmagnetic Cobalt
نویسندگان
چکیده
Because of the presence of 3d transition metals in the Earth's core, magnetism of these materials in their dense phases has been a topic of great interest. Theory predicts a dense face-centred-cubic phase of cobalt, which would be nonmagnetic. However, this dense nonmagnetic cobalt has not yet been observed. Recent investigations in thin film polycrystalline materials have shown the formation of compressive stress, which can increase the density of materials. We have discovered the existence of ultrathin superdense nonmagnetic cobalt layers in a polycrystalline cobalt thin film. The densities of these layers are about 1.2-1.4 times the normal density of Co. This has been revealed by X-ray reflectometry experiments, and corroborated by polarized neutron reflectometry (PNR) experiments. Transmission electron microscopy provides further evidence. The magnetic depth profile, obtained by PNR, shows that the superdense Co layers near the top of the film and at the film-substrate interface are nonmagnetic. The major part of the Co film has the usual density and magnetic moment. These results indicate the possibility of existence of nonmagnetic Co in the earth's core under high pressure.
منابع مشابه
ساخت و بررسی خواص مغناطیسی فریت کبالت بهروش شیشه سرامیک در سیستم Na2O-Fe2O3-CoO-B2O3-SiO2
In this investigation, the effect of heat treatment on magnetic properties of glass and nano-structured cobalt-ferrite glass-ceramic was studied. The glass was synthesized in the system of Na2O-Fe2O3-CoO-B2O3-SiO2. Based on DTA results, heat treatment was done at different times and temperatures. X-ray diffraction pattern of glass-ceramic showed the crystallization of CoFe2O4 and some nonmagnet...
متن کاملInvestigation of effect of magnetic ordering on structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu) using ab initio method
Structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu) were studied for each of three magnetic configurations nonmagnetic, ferromagnetic, and antiferromagnetic by using density functional theory in generalized gradient approximations (GGA) and strong correlation correction (GGA + U). Due to magnetic transition from antiferromagnetic to nonmagnetic phase, an electr...
متن کاملThe Effect of Zn- Cr Substitution on the Structural and Magnetic Properties of Cobalt Ferrite Nanoparticles
In this investigation, the structural and magnetic properties of Cr and Zn substituted Co ferrite with the general formula Co1-xZnxFe2-xCrxO4 (x= 0.1, 0.3, 0.5, 0.7) as prepared by sol- gel method were studied. The structural, morphological and magnetic properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Scanning electron microscopy (SEM)...
متن کاملTunneling via Individual Electronic States in Ferromagnetic Nanoparticles
We measure electron tunneling via discrete energy levels in ferromagnetic cobalt particles that are less than 4 nm in diameter, using nonmagnetic electrodes. Because of magnetic anisotropy, the energy of each tunneling resonance shifts as an applied magnetic field rotates the particle’s magnetic moment. We see both spin-increasing and decreasing tunneling transitions, but do not observe the spi...
متن کاملCurrent-induced switching of domains in magnetic multilayer devices
Current-induced switching in the orientation of magnetic moments is observed in cobalt/copper/cobalt sandwich structures, for currents flowing perpendicularly through the layers. Magnetic domains in adjacent cobalt layers can be manipulated controllably between stable parallel and antiparallel configurations by applying current pulses of the appropriate sign. The observations are in accord with...
متن کامل